

HARDWARE REFERENCE DESIGN

WWW.UNICORE.COM

UM621 Series

Multi-GNSS Dual-frequency Integrated Positioning Module

Copyright© 2009-2024, Unicore Communications, Inc.

Data subject to change without notice.

Revision History

Version	Revision History	Date
R1.0	First release	Oct. 2022
R1.1	Optimize the description of antenna power supply; Add Chapter 3 Power Supply Requirements	Apr. 2023
R2.0	Expand the document scope: applicable to UM621 series	Sept. 2023
R2.1	Modify the voltage range of V_BCKP; Add the voltage requirements of VCC and V_BCKP for the module that supports wake-on-motion (WOM)	Feb. 2024
R2.2	Add Chapter 5: Odometer Interfaces	Apr. 2024

Legal right notice

This manual provides information and details on the products of Unicore Communication, Inc. ("Unicore") referred to herein.

All rights, title and interest to this document and the information such as data, designs, layouts contained in this manual are fully reserved, including but not limited to the copyrights, patents, trademarks and other proprietary rights as relevant governing laws may grant, and such rights may evolve and be approved, registered or granted from the whole information aforesaid or any part(s) of it or any combination of those parts.

Unicore holds the trademarks of "和芯星通", "UNICORECOMM", "Unicore" and other trade name, trademark, icon, logo, brand name and/or service mark of Unicore products or their product serial referred to in this manual (collectively "Unicore Trademarks").

This manual or any part of it, shall not be deemed as, either expressly, implied, by estoppel or any other form, the granting or transferring of Unicore rights and/or interests (including but not limited to the aforementioned trademark rights), in whole or in part.

Disclaimer

The information contained in this manual is provided "as is" and is believed to be true and correct at the time of its publication or revision. This manual does not represent, and in any case, shall not be construed as a commitments or warranty on the part of Unicore

UM621 Series Hardware Reference Design

with respect to the fitness for a particular purpose/use, the accuracy, reliability and correctness of the information contained herein.

Information, such as product specifications, descriptions, features and user guide in this manual, are subject to change by Unicore at any time without prior notice, which may not be completely consistent with such information of the specific product you purchase.

Should you purchase our product and encounter any inconsistency, please contact us or our local authorized distributor for the most up-to-date version of this manual along with any addenda or corrigenda.

Contents

1	Reference Circuit Using an Active Antenna1				
2	Refe	rence C	ircuit Using a Passive Antenna	2	
3	Pow	er Supp	ly Requirements	3	
	3.1	Main	Supply (VCC)	3	
	3.2	Backı	up Supply (V_BCKP)	3	
4	Recommended BOM4				
5	Odoı	meter In	terfaces	4	
	5.1	Hardv	vare Interface	4	
		5.1.1	Odometer Reference Circuit and Waveform Diagram	5	
		5.1.2	Odometer Speed and Direction Signal	6	
	5.2	Softw	vare Interface	7	

1 Reference Circuit Using an Active Antenna

- The voltage range of VCC and V_BCKP are described in Chapter 3: Power Supply Requirements
- > Ground all GND pins of the module
- > Connect the RF_IN signal to the antenna and note the 50 Ω impedance matching
- > Feed the antenna with an external power supply

If the antenna power supply and the module's main supply VCC use the same power rail, the ESD, surge and overvoltage from the antenna will have an effect on VCC, which may cause damage to the module. Therefore, it's recommended to design an independent power rail for the antenna to reduce the possibility of damage to the module.

> Requirements for the odometer speed pulse: width \geq 100 µs, frequency \leq 5K Hz

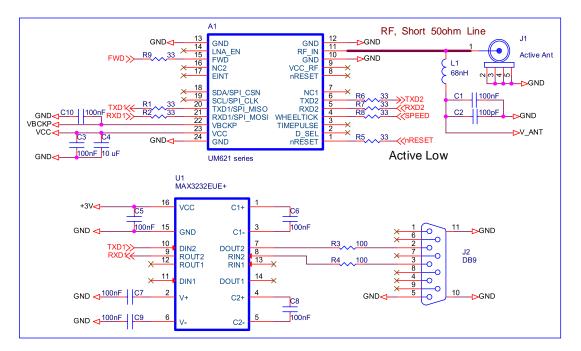


Figure 1-1 Reference Circuit Using an Active Antenna

2 Reference Circuit Using a Passive Antenna

- When using a passive antenna, a low noise amplifier should be added between the antenna and the RF_IN of the module in order to ensure the performance of the system.
- ≻ For the RF routing (antenna → LNA → RF_IN), note the 50 Ω impedance matching
- > For the voltage range of V_BCKP, see Chapter 3: Power Supply Requirements
- > Requirements for the odometer speed pulse: width \geq 100 µs, frequency \leq 5 KHz

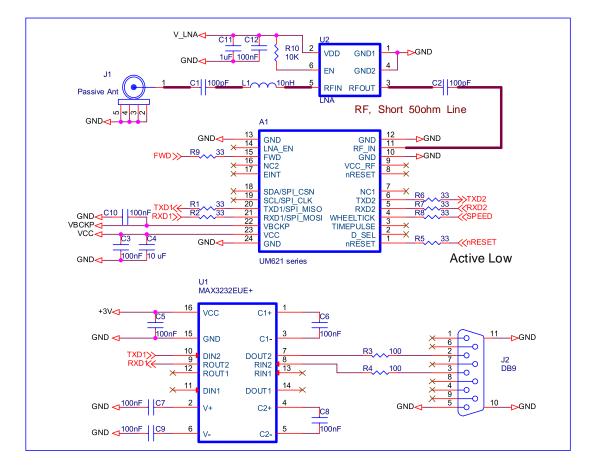


Figure 2-1 Reference Circuit Using a Passive Antenna

3 Power Supply Requirements

3.1 Main Supply (VCC)

- For the module that does not support wake-on-motion, the voltage range of VCC is 2.7 V ~ 3.6 V.
- For the module that supports wake-on-motion, the voltage range of VCC is 3.0 V ~
 3.6 V.

Notes:

- The VCC initial level when power-on should be less than 0.4 V.
- The VCC ramp when power-on should be monotonic, without plateaus.
- The voltages of undershoot and ringing should be within 5% VCC.
- VCC power-on waveform: The time interval from 10% rising to 90% must be within 100 μ s ~ 10 ms.
- Power-on time interval: The time interval between the power-off (VCC < 0.4 V) to the next power-on is recommended to be larger than 500 ms.

3.2 Backup Supply (V_BCKP)

When using hot start, users should supply backup power to the module.

- For the module that does not support wake-on-motion, the voltage range of V_BCKP is 2.0 V ~ 3.6 V.
- For the module that supports wake-on-motion, the voltage range of V_BCKP is 3.0V
 ~ 3.6 V. Meanwhile, ensure that the voltage at V_BCKP is lower than that at VCC.

Notes:

- The V_BCKP initial level when power-on should be less than 0.4 V.
- The V_BCKP ramp when power-on should be monotonic, without plateaus.
- The voltages of undershoot and ringing should be within 5% V_BCKP.
- V_BCKP power-on waveform: The time interval from 10% rising to 90% must be within 100 μs ~ 10 ms.
- Power-on time interval: The time interval between the power-off (V_BCKP < 0.4 V) to the next power-on is recommended to be larger than 500 ms.
- The V_BCKP pin cannot be floating or connected to ground. When V_BCKP is not used, it should be connected to VCC or connected to backup power.

4 Recommended BOM

Table 4-1 Recommended BOM

	Component	Order No.	Manufacturer
U1	RS-232 Transceivers	MAX3232EUE+	ТІ
U2	LNA	MXDLN14TP	MAXSCEND

5 Odometer Interfaces

Odometer data can be input to the UM621 series modules via hardware interface or software interface.

The two ways cannot be used at the same time.

5.1 Hardware Interface

The Pin4 (WHEELTICK) of the UM621 series modules is used to receive the speed pulse signal from the odometer, and the Pin15 (FWD) is used to receive the direction signal from the odometer.

The odometer signal of vehicles is generally 12 V and the signal quality is poor. Therefore, signal filtering, optocoupler isolation and level conversion are required before transferring the odometer signal to the UM621 series modules for use.

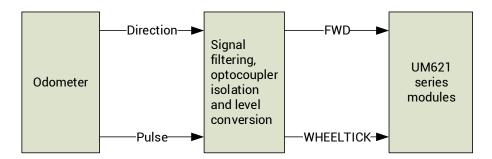
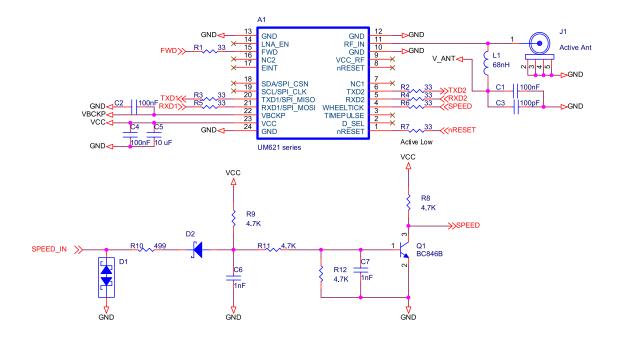



Figure 5-1 Odometer Connection

5.1.1 Odometer Reference Circuit and Waveform Diagram

Figure 5-2 Reference Circuit for Odometer

The voltages of VCC, V_BCKP and SPEED/FWD shall meet the requirements in Table 5-1.

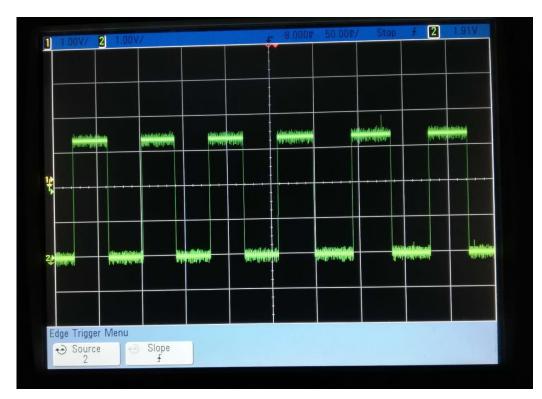


Figure 5-3 Odometer Waveform Diagram

5.1.2 Odometer Speed and Direction Signal

5.1.2.1 Voltage Requirements

Table 5-1 Voltage Requirements

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Main Supply	VCC	2.7	3.3	3.6	v	Non- WOM
		3.0	3.3	3.6	v	WOM
Backup Supply	V_BCKP	2.0		3.6	v	Non- WOM
		3.0		3.6	v	WOM
Ripple Voltage	V _{p-p}			50	mV	
WHEELTICK/FWD Low Level Input Voltage	VIL	0		0.2*VCC	v	
WHEELTICK/FWD High Level Input Voltage	VIH	0.7*VCC		VCC+0.2	v	

5.1.2.2 Odometer (WHEELTICK) Frequency

- 1. The odometer signal input to the module is required to be a square wave signal with a frequency not higher than 5 KHz.
- 2. The distance corresponding to a square wave signal is required to be between 1 cm and 40 cm. For example, if the distance is 20 cm, the output frequency is

where V is the velocity of the vehicle and its unit is km/h.

- 3. The chip detects the number of rising edges of the square wave signal, and the time of high level and low level should not be lower than 100 µs.
- 4. If the vehicle is still (for example, parking), the level of WHEELTICK pin must remain constant.

UM621 Series Hardware Reference Design

5.1.2.3 Direction (FWD) Signal

The module defaults to forward at high level and reverse at low level.

It can be configured through the commands as shown below. Please refer to the protocol manual for details.

\$CFGODOFWD,1	forward at high level and reverse at low level
\$CFGODOFWD,0	forward at low level and reverse at high level

5.2 Software Interface

Speed and direction information can be input to the UM621 series modules via UART1 or UART2, which can be configured by the following command.

Syntax: \$ODODATA,time,speed,forward,RSV,RSV,RSV Example: \$ODODATA,091649.00,10000,1,,,,

Parameter	Format	Description
time	STR	UTC time; in the format of hhmmss.ss hh - Hour mm - Minute ss.ss - Second
speed	UINT	Driving speed; unit: 1e-3 m/s
forward	UINT	Driving direction: 0 - Forward 1 - Reverse
RSV		Reserved
RSV		Reserved
RSV		Reserved

和芯星通科技(北京)有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路7号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094 www.unicore.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com

www.unicore.com